MATH 9 LESSON 14

Unit 2 Powers & Exponent Laws

Set 1 Mini-Lesson #3

Order of Operations

BEDMAS

Brackets

Exponents

Division Multiplication in order, from left to right

Addition
Subtraction in order, from left to right

Example 1: Adding and Subtracting with Powers

Evaluate:

BEDMAS

a)
$$3^3 + 2^3$$
 b) $3 - 2^3$ c) $(3 + 2)^3$
= $37 + 8$ = $3 - 8$ = $(5)^3$
= 35 = -5 = 125

b)
$$3 - 2^3$$

= $3 - 8$
= -5

c)
$$(3 + 2)^3$$

= $(5)^3$
= $(35)^3$

Example 2: Multiplying and Dividing with Powers Evaluate:

a)
$$[2 \times (-3)^3 - 6]^2$$

 $= [2 \times (-3)^3 - 6]^2$
 $= [-54 - 6]^3$
 $= [-60]^3$
 $= 3600$

b)
$$(18^2 + 5^0)^2 \div (-5)^3$$

$$= (334+1)^{3} \div (-5)^{3}$$

$$= (335)^{3} \div (-5)^{3}$$

$$= (35635)^{3} \div (-135)^{3}$$

$$= -845$$

Try this: $2 \times (-5)^2 - (3)^5 - 10^0$ $= 2 \times (25) - 243 - 1$ = 50 - 243 - 1 = -193 - 1= -194

Explain why the answers to $3^3 + 2^3$ and $(3 + 2)^3$ are different.

$$37+8$$
 $(5)^3$ 35 125

End of mini-lesson #3

Assignment 14

Page 66# 3,4,5abcd

Practice

Check

- 3. Evaluate.
 - a) $3^2 + 1$
- b) $3^2 1$
- c) $(3+1)^2$
- d) $(3-1)^2$
- e) $2^2 + 4$ g) $(2+4)^2$
- f) $2^2 4$
- h) $(2-4)^2$
- i) $2 4^2$
- j) $2^2 4^2$
- 4. Evaluate. Check using a calculator.
 - a) $2^3 \times 5$
- b) 2×5^2
- c) $(2 \times 5)^3$
- d) $(2 \times 5)^2$ f) $(-10) \div 5^0$
- e) $(-10)^3 \div 5$ g) $[(-10) \div 5]^3$
- h) $[(-10) \div 5]^0$
- 5. Evaluate.
 - a) $2^3 + (-2)^3$
- b) $(2-3)^3$
- c) $2^3 (-3)^3$
- d) $(2 + 3)^3$
- e) $2^3 \div (-1)^3$
- f) $(2 \div 2)^3$
- g) $2^3 \times (-2)^3$
- h) $(2 \times 1)^3$

Apply

- 6. a) Evaluate. Record your work.
 - i) $4^2 + 4^3$
- ii) $5^3 + 5^6$
- b) Evaluate. Record your work.
 - i) $6^3 6^2$
- ii) $6^3 6^5$
- 7. Identify, then correct, any errors in the student work below. Explain how you think the errors occurred.

$$3^{2} + 2^{2} \times 2^{4} + (-6)^{2}$$

$$= 9 + 4 \times 16 - 36$$

$$= 13 \times 16 - 36$$

$$= 172$$

- 8. State which operation you will do first, then evaluate.
 - a) $(7)(4) (5)^2$
- b) $6(2-5)^2$
- c) $(-3)^2 + (4)(7)$
- d) $(-6) + 4^0 \times (-2)$
- e) $10^2 \div [10 \div (-2)]^2$ f) $[18 \div (-6)]^3 \times 2$
- 9. Sometimes it is helpful to use an acronym as a memory trick. Create an acronym to help you remember the order of operations. Share it with your classmates.

An acronym is a word formed from the first letters of other words.

- 10. Evaluate.
 - a) $(3+4)^2 \times (4-6)^3$
 - b) $(8 \div 2^2 + 1)^3 3^5$
 - c) $4^3 \div [8(6^0 2^1)]$
 - d) $9^2 \div [9 \div (-3)]^2$
 - e) $(2^2 \times 1^3)^2$
 - f) $(11^3 + 5^2)^0 + (4^2 2^4)$
- 11. Explain why the brackets are not necessary to evaluate this expression.

$$(-4^3 \times 10) - (6 \div 2)$$

Evaluate the expression, showing each step.

- 12. Winona is tiling her 3-m by 3-m kitchen floor. She bought stone tiles at \$70/m2. It costs \$60/m2 to install the tiles. Winona has a coupon for a 25% discount off the installation cost. This expression represents the cost, in dollars, to tile the floor: $70 \times 3^2 + 60 \times 3^2 \times 0.75$ How much does it cost to tile the floor?
- 13. Evaluate this expression:

$$2^3 + (3 \times 4)^2 - 6$$

Change the position of the brackets. Evaluate the new expression. How many different answers can you get by changing only the position of the brackets?

UNIT 2: Powers and Exponent Laws